login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046243
Numbers whose cube is palindromic in base 11.
2
0, 1, 2, 7, 12, 122, 133, 1332, 14642, 14763, 15984, 161052, 162504, 175704, 1771562, 1772893, 1932624, 19487172, 19503144, 19648344, 21258744, 214358882, 214373523, 214521264, 216130564, 233846064, 2357947692, 2358123384, 2377434984, 2572306584, 25937424602
OFFSET
1,3
COMMENTS
Contains all terms of A069748, interpreted as base-11 numbers, and then converted to decimal. - Michael S. Branicky, Aug 06 2022
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..36
Patrick De Geest, World!Of Numbers, Palindromic cubes in bases 2 to 17.
MATHEMATICA
For[i = 1, i < 1000000, i++, tmp = IntegerDigits[i^3, 11]; If[tmp == Reverse[tmp], Print[i]]; ]; (* Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 13 2006 *)
PROG
(PARI) isok(k) = my(d=digits(k^3, 11)); Vecrev(d) == d; \\ Michel Marcus, Aug 02 2022
(Python)
from itertools import count, islice
from sympy.ntheory import is_palindromic as ispal
def agen(start=0): yield from (k for k in count(start) if ispal(k**3, 11))
print(list(islice(agen(), 17))) # Michael S. Branicky, Aug 02 2022
CROSSREFS
Sequence in context: A084068 A192772 A353069 * A230302 A230637 A301852
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, May 15 1998
EXTENSIONS
More terms from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 13 2006
a(29) and beyond from Michael S. Branicky, Aug 07 2022
STATUS
approved