Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Aug 11 2024 14:39:01
%S 0,1,2,7,12,122,133,1332,14642,14763,15984,161052,162504,175704,
%T 1771562,1772893,1932624,19487172,19503144,19648344,21258744,
%U 214358882,214373523,214521264,216130564,233846064,2357947692,2358123384,2377434984,2572306584,25937424602
%N Numbers whose cube is palindromic in base 11.
%C Contains all terms of A069748, interpreted as base-11 numbers, and then converted to decimal. - _Michael S. Branicky_, Aug 06 2022
%H Michael S. Branicky, <a href="/A046243/b046243.txt">Table of n, a(n) for n = 1..36</a>
%H Patrick De Geest, <a href="https://www.worldofnumbers.com/nobase10pg4.htm">World!Of Numbers</a>, Palindromic cubes in bases 2 to 17.
%t For[i = 1, i < 1000000, i++, tmp = IntegerDigits[i^3, 11]; If[tmp == Reverse[tmp], Print[i]];]; (* Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 13 2006 *)
%o (PARI) isok(k) = my(d=digits(k^3, 11)); Vecrev(d) == d; \\ _Michel Marcus_, Aug 02 2022
%o (Python)
%o from itertools import count, islice
%o from sympy.ntheory import is_palindromic as ispal
%o def agen(start=0): yield from (k for k in count(start) if ispal(k**3, 11))
%o print(list(islice(agen(), 17))) # _Michael S. Branicky_, Aug 02 2022
%Y Cf. A046244, A069748.
%K nonn,base
%O 1,3
%A _Patrick De Geest_, May 15 1998
%E More terms from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 13 2006
%E a(29) and beyond from _Michael S. Branicky_, Aug 07 2022