OFFSET
1,5
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,5,-1,-5,1,1).
FORMULA
a(n) = a(n-1)+5*a(n-2)-a(n-3)-5*a(n-4)+a(n-5)+a(n-6).
G.f.: -x*(x^2-x-1)*(x^2+2*x-1) / (x^6+x^5-5*x^4-x^3+5*x^2+x-1). [Colin Barker, Jan 17 2013]
EXAMPLE
MATHEMATICA
q = x^3; s = x^2 + 2 x + 1; z = 40;
p[n_, x_] := Fibonacci[n, x];
Table[Expand[p[n, x]], {n, 1, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 1, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192772 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192773 *)
u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}] (* A192774 *)
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Clark Kimberling, Jul 09 2011
STATUS
approved