login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073713
Numbers n such that the number of distinct primes dividing n = number of anti-divisors of n.
1
1, 3, 4, 12, 24, 30, 36, 114, 120, 156, 174, 516, 576, 744, 804, 834, 894, 1056, 1344, 1356, 1626, 1686, 1884, 2064, 2136, 2274, 2616, 3396, 3414, 3606, 4044, 4146, 4314, 4506, 5034, 5136, 6036, 6054, 6126, 6306, 6504, 7296, 7680, 7824, 7944, 8994, 9024
OFFSET
1,2
COMMENTS
See A066272 for definition of anti-divisor.
EXAMPLE
30 is here since it has three distinct primes that divide it: {2, 3, 5} and three anti-divisors: {4, 12, 20}.
MATHEMATICA
atd[n_] := Count[Flatten[Quotient[#, Rest[Select[Divisors[#], OddQ]]] & /@ (2 n + Range[-1, 1])], Except[1]]; Select[Range[9030], PrimeNu[#] == atd[#] &] (* Jayanta Basu, Jul 08 2013 *)
PROG
(PARI) {for(n=1, 9050, v1=[]; v2=[]; v3=[]; ds=divisors(2*n-1); for(k=2, matsize(ds)[2]-1, if(ds[k]%2>0, v1=concat(v1, ds[k]))); ds=divisors(2*n); for(k=2, matsize(ds)[2]-1, if(ds[k]%2>0, v2=concat(v2, ds[k]))); ds=divisors(2*n+1); for(k=2, matsize(ds)[2]-1, if(ds[k]%2>0, v3=concat(v3, ds[k]))); v=vecsort(concat(v1, concat(v2, v3))); if(matsize(v)[2]==matsize(factor(n))[1], print1(n, ", ")))}
(Python3)
from sympy import divisors, factorint
A073713 = [n for n in range(1, 10**5) if len(factorint(n)) == len([2*d for d in divisors(n) if n > 2*d and n % (2*d)] + [d for d in divisors(2*n-1) if n > d >= 2 and n % d] + [d for d in divisors(2*n+1) if n > d >= 2 and n % d])] # Chai Wah Wu, Aug 13 2014
CROSSREFS
Sequence in context: A111358 A111357 A081621 * A291023 A084921 A070765
KEYWORD
nonn
AUTHOR
Jason Earls, Aug 30 2002
EXTENSIONS
Edited and extended by Klaus Brockhaus, Sep 02 2002
STATUS
approved