The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A073716 Numbers n such that the number of prime divisors of n (counted with multiplicity) = number of anti-divisors of n. 0
 1, 3, 9, 20, 30, 40, 44, 80, 84, 100, 114, 168, 174, 192, 208, 244, 256, 272, 300, 316, 324, 404, 440, 456, 464, 520, 524, 596, 672, 704, 720, 834, 894, 1044, 1064, 1248, 1272, 1324, 1416, 1464, 1604, 1608, 1626, 1632, 1636, 1680, 1686, 1704, 1744, 1756 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See A066272 for definition of anti-divisor. LINKS EXAMPLE 40 is a term since its prime factors are {2, 2, 2, 5} and its anti-divisors are {3, 9, 16, 27}. MATHEMATICA atd[n_] := Count[Flatten[Quotient[#, Rest[Select[Divisors[#], OddQ]]] & /@ (2 n + Range[-1, 1])], Except[1]]; Select[Range[1760], PrimeOmega[#] == atd[#] &] (* Jayanta Basu, Jul 08 2013 *) PROG (PARI) {for(n=1, 1800, v1=[]; v2=[]; v3=[]; ds=divisors(2*n-1); for(k=2, matsize(ds)[2]-1, if(ds[k]%2>0, v1=concat(v1, ds[k]))); ds=divisors(2*n); for(k=2, matsize(ds)[2]-1, if(ds[k]%2>0, v2=concat(v2, ds[k]))); ds=divisors(2*n+1); for(k=2, matsize(ds)[2]-1, if(ds[k]%2>0, v3=concat(v3, ds[k]))); v=vecsort(concat(v1, concat(v2, v3))); if(matsize(v)[2]==bigomega(n), print1(n, ", ")))} CROSSREFS Cf. A001222, A066272. Sequence in context: A178963 A033315 A200612 * A174866 A187409 A037048 Adjacent sequences:  A073713 A073714 A073715 * A073717 A073718 A073719 KEYWORD nonn AUTHOR Jason Earls, Aug 30 2002 EXTENSIONS Edited and extended by Klaus Brockhaus, Sep 02 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 1 22:36 EDT 2021. Contains 346408 sequences. (Running on oeis4.)