login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200612
The arithmetic mean of the prime factors (with multiplicity) of n is 3.
4
3, 9, 20, 27, 60, 81, 112, 180, 243, 336, 400, 540, 729, 1008, 1200, 1620, 2187, 2240, 2816, 3024, 3600, 4860, 6561, 6720, 8000, 8448, 9072, 10800, 12544, 13312, 14580, 19683, 20160, 24000, 25344, 27216, 32400, 37632, 39936, 43740, 44800, 56320, 59049, 60480
OFFSET
1,1
LINKS
Reinhard Zumkeller and Donovan Johnson, Table of n, a(n) for n = 1..500 (first 150 terms from Reinhard Zumkeller)
FORMULA
A001414(a(n)) mod A001222(a(n)) = 0 and A001414(a(n))/A001222(a(n)) = 3. [Reinhard Zumkeller, Nov 20 2011]
EXAMPLE
20 is in the sequence because 20 = 2*2*5 and (2+2+5)/3 = 9/3 = 3.
MAPLE
for i from 2 to 35000 do: a:=ifactors(i): s:=sum((a[2][j][1]*a[2][j][2]), j=1..nops(a[2])): t:=sum((a[2][j][2]), j=1..nops(a[2])): if s/t=3 then print(i); fi od:
MATHEMATICA
Select[Range[61000], Mean[Flatten[Table[#[[1]], {#[[2]]}]&/@FactorInteger[ #]]]==3&] (* Harvey P. Dale, Nov 08 2013 *)
PROG
(Haskell)
a200612 n = a200612_list !! (n-1)
a200612_list = filter f [2..] where
f x = r == 0 && x' == 3 where (x', r) = divMod (a001414 x) (a001222 x)
-- Reinhard Zumkeller, Nov 20 2011
(PARI) isok(n) = my(f = factor(n)); (sum(k=1, #f~, f[k, 1]*f[k, 2]) / vecsum(f[, 2])) == 3; \\ Michel Marcus, Feb 22 2016
CROSSREFS
Subsequence of A078175.
Sequence in context: A375231 A178963 A033315 * A355136 A073716 A174866
KEYWORD
nonn
AUTHOR
Jeffrey Burch, Nov 19 2011
STATUS
approved