login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073708
Generating function A(x) satisfies A(x) = (1+x)^2*A(x^2)^2, with A(0)=1.
9
1, 2, 5, 8, 18, 28, 50, 72, 129, 186, 301, 416, 664, 912, 1368, 1824, 2730, 3636, 5234, 6832, 9788, 12744, 17724, 22704, 31506, 40308, 54730, 69152, 93592, 118032, 156888, 195744, 259625, 323506, 423021, 522536, 681642, 840748, 1083402, 1326056, 1705665
OFFSET
0,2
LINKS
FORMULA
Equals the self-convolution of A073707.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 5*x^2 + 8*x^3 + 18*x^4 + 28*x^5 + 50*x^6 +...
where A(x)^2 = 1 + 4*x + 14*x^2 + 36*x^3 + 93*x^4 + 208*x^5 + 456*x^6 +...
This sequence equals the self-convolution of A073707, which begins:
[1, 1, 2, 2, 5, 5, 8, 8, 18, 18, 28, 28, 50, 50, ...].
The first differences of this sequence result in A073709:
[1, 1, 3, 3, 10, 10, 22, 22, 57, 57, 115, 115, ...];
the self-convolution of A073709 yields A073710:
[1, 2, 7, 12, 35, 58, 133, 208, ...],
which in turn equals the first differences of the unique terms of A073709.
MATHEMATICA
A073708list[n_] := Module[{m = 1, A = 1}, While[m <= n, m = 2 m; A = ((1 + x)*(A /. x -> x^2))^2] + O[x]^m; CoefficientList[A, x][[1 ;; n]]]; A073708list[50] (* Jean-François Alcover, Apr 21 2016, adapted from PARI *)
PROG
(PARI) a(n)=local(A, m); if(n<0, 0, m=1; A=1+O(x); while(m<=n, m*=2; A=((1+x)*subst(A, x, x^2))^2); polcoeff(A, n))
(Haskell)
a073708 n = a073708_list !! n
a073708_list = conv a073707_list [] where
conv (v:vs) ws = (sum $ zipWith (*) ws' $ reverse ws') : conv vs ws'
where ws' = v : ws
-- Reinhard Zumkeller, Jun 13 2013
CROSSREFS
Cf. A073709, A073710. A073707(2n)=a(n).
Sequence in context: A050872 A086324 A293830 * A024460 A039658 A063675
KEYWORD
easy,nonn
AUTHOR
Paul D. Hanna, Aug 04 2002
EXTENSIONS
Edited by Michael Somos, May 03, 2003
Edited by Paul D. Hanna, Jan 04 2013
STATUS
approved