login
A088661
A log based Cantor self similar sequence.
0
8, 8, 7, 6, 7, 8, 8, 7, 6, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8, 5, 7, 8, 8, 7, 6, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8, 6, 7, 8, 8, 7, 5, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8, 6, 7, 8, 8, 7, 6, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8, 6, 7, 8, 8, 7, 6, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8, 4, 7, 8, 8, 7, 6, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8, 6, 7, 8, 8, 7, 5
OFFSET
3,1
FORMULA
p[n_, k_]=Sum[Log[i], {i, 1, n}]/Sum[Log[i], {i, n-Floor[3*n/4^k], n-Floor[n/4^k]}] a(n) = Sum[Floor[p[n, k]/p[n-1, k]], {k, 1, 8}]
MATHEMATICA
p[n_, k_]=Sum[Log[i], {i, 1, n}]/Sum[Log[i], {i, n-Floor[3*n/4^k], n-Floor[n/4^k]}] digits=200 f[n_]=Sum[Floor[p[n, k]/p[n-1, k]], {k, 1, 8}] at=Table[f[n], {n, 3, digits}]
CROSSREFS
Cf. A088487 A self similar Sierpinski type chaotic sequence with rate three at eight levels. A088488 A self similar Cantor type sequence with eight levels.
Sequence in context: A154400 A215734 A202953 * A329220 A127196 A350715
KEYWORD
nonn,uned
AUTHOR
Roger L. Bagula, Nov 21 2003
STATUS
approved