login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090739 Exponent of 2 in 9^n - 1. 14
3, 4, 3, 5, 3, 4, 3, 6, 3, 4, 3, 5, 3, 4, 3, 7, 3, 4, 3, 5, 3, 4, 3, 6, 3, 4, 3, 5, 3, 4, 3, 8, 3, 4, 3, 5, 3, 4, 3, 6, 3, 4, 3, 5, 3, 4, 3, 7, 3, 4, 3, 5, 3, 4, 3, 6, 3, 4, 3, 5, 3, 4, 3, 9, 3, 4, 3, 5, 3, 4, 3, 6, 3, 4, 3, 5, 3, 4, 3, 7, 3, 4, 3, 5, 3, 4, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The exponent of 2 in the factorization of Fibonacci(6n). - T. D. Noe, Mar 14 2014
LINKS
T. Lengyel, The order of the Fibonacci and Lucas numbers, Fib. Quart. 33 (1995), 234-239.
FORMULA
a(n) = A007814(n) + 3.
a((2*n-1)*2^p) = p + 3, p >= 0. - Johannes W. Meijer, Feb 08 2013
a(n) = log_2(A006519(9^n - 1)). - Alonso del Arte, Feb 08 2013
a(n) = 2*tau(4*n)/(tau(4*n) - tau(n)), where tau(n) = A000005(n). - Peter Bala, Jan 06 2021
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4. - Amiram Eldar, Nov 28 2022
EXAMPLE
For n = 2, we see that -1 + 3^4 = 80 = 2^4 * 5 so a(2) = 4.
For n = 3, we see that -1 + 3^6 = 728 = 2^3 * 7 * 13, so a(3) = 3.
MAPLE
nmax:=70: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := p+3: od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Feb 08 2013
MATHEMATICA
Table[Part[Flatten[FactorInteger[ -1+3^(2*n)]], 2], {n, 1, 70}]
Table[IntegerExponent[Fibonacci[n], 2], {n, 6, 600, 6}] (* T. D. Noe, Mar 14 2014 *)
PROG
(PARI) a(n)=valuation(n, 2)+3 \\ Charles R Greathouse IV, Mar 14 2014
(Python)
def A090739(n): return (~n&n-1).bit_length()+3 # Chai Wah Wu, Jul 11 2022
CROSSREFS
Cf. A000005, A006519, A120738 (partial sums).
Appears in A161737.
Sequence in context: A223169 A201420 A244055 * A076400 A363194 A121889
KEYWORD
nonn,easy
AUTHOR
Labos Elemer and Ralf Stephan, Jan 19 2004
EXTENSIONS
More terms from T. D. Noe, Mar 14 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 03:04 EST 2023. Contains 367622 sequences. (Running on oeis4.)