|
|
A090742
|
|
a(n) = largest prime such that any n consecutive digits gives a distinct prime.
|
|
0
|
|
|
7523, 619737131179, 9419919379719113739773313173, 9551979199733313739311933719319133, 763031379939791939113997931991393133317939371999719, 9651473911777911173191173713117119, 99071479791317917331771937311, 6195066779711393117319331177319
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
REFERENCES
|
J. R. Rickard and J. J. Hitchcock, Problems Drive, Eureka, 40 (1979), 28-29 (problem nr. 10), 40 (solutions).
|
|
LINKS
|
Table of n, a(n) for n=1..8.
Carlos Rivera, Puzzle 253: "Eureka?", The Prime Puzzles & Problems Connection.
|
|
EXAMPLE
|
In 619737131179 the strings 61, 19, 97, ..., 79 form distinct primes. No larger prime has this property, so a(2) = 619737131179.
|
|
CROSSREFS
|
Sequence in context: A258605 A258604 A093225 * A273382 A186938 A185749
Adjacent sequences: A090739 A090740 A090741 * A090743 A090744 A090745
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Ray G. Opao, Feb 03 2004
|
|
EXTENSIONS
|
a(4) through a(8) found by J. K. Andersen.
|
|
STATUS
|
approved
|
|
|
|