|
|
A090744
|
|
Consider numbers of the form ...53197531975319753, whose digits read from the right are 3,5,7,9,1,3,5,7,9,1,3,... Sequence gives lengths of these numbers that are primes.
|
|
3
|
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(5) - Fermat and Lucas PRP! Tested with pfgw64 with switch -tc. - Marek Hubal, Mar 04 2019
a(6) - Fermat and Lucas PRP! Tested with pfgw64 with switch -tc. a(7) > 32000. - Marek Hubal, Mar 06 2019
|
|
LINKS
|
|
|
EXAMPLE
|
a(1)=1 because 3 is prime and 3 has 1 digit.
a(2)=2 because 53 is prime and 53 has 2 digits.
a(3)=5 because 19753 is prime and 19753 has 5 digits.
|
|
MATHEMATICA
|
s = 0; Do[s = s + 10^n*Switch[ Mod[n, 5], 4, 1, 0, 3, 1, 5, 2, 7, 3, 9]; If[ PrimeQ[s], Print[n + 1]], {n, 0, 3000}] (* Robert G. Wilson v, Feb 19 2004 *)
|
|
PROG
|
(PARI) test3(n)= s=0; for(i=0, n, if(Mod(i, 5)==0, s=s+3*10^i, if(Mod(i, 5)==1, s=s+5*10^i, if(Mod(i, 5)==2, s=s+7*10^i, if(Mod(i, 5)==3, s=s+9*10^i, if(Mod(i, 5)==4, s=s+1*10^i, )))))); return(s);
for(j=0, 1000, if(isprime(test3(j)), print1(j+1, ", ")));
|
|
CROSSREFS
|
|
|
KEYWORD
|
hard,nonn,base,more
|
|
AUTHOR
|
Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Feb 03 2004
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|