login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049294 Number of subgroups of index 3 in free group of rank n+1. 5
1, 13, 97, 625, 3841, 23233, 139777, 839425, 5038081, 30231553, 181395457, 1088385025, 6530334721, 39182057473, 235092443137, 1410554855425, 8463329525761, 50779977940993, 304679869218817, 1828079218458625 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 23.

R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(b).

LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..1000

M. Hall, Subgroups of finite index in free groups, Canad. J. Math., 1 (1949), 187-190.

V. A. Liskovets and A. Mednykh, Enumeration of subgroups in the fundamental groups of orientable circle bundles over surfaces, Commun. in Algebra, 28, No. 4 (2000), 1717-1738.

Index entries for linear recurrences with constant coefficients, signature (9,-20,12).

FORMULA

a(n) = 3*6^n-3*2^n+1.

G.f.: (1+4*x)/((1-x)*(1-2*x)*(1-6*x)). [Colin Barker, May 08 2012]

MATHEMATICA

LinearRecurrence[{9, -20, 12}, {1, 13, 97}, 20] (* Harvey P. Dale, Sep 24 2017 *)

CROSSREFS

Cf. A003319, A027837, A049290, A049291, A049292, A049293, A049295.

Sequence in context: A160554 A211388 A125350 * A198480 A126508 A228680

Adjacent sequences:  A049291 A049292 A049293 * A049295 A049296 A049297

KEYWORD

easy,nice,nonn

AUTHOR

Valery A. Liskovets

EXTENSIONS

More terms from Karen Richardson (s1149414(AT)cedarville.edu)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 24 11:12 EST 2018. Contains 299603 sequences. (Running on oeis4.)