OFFSET
1,5
REFERENCES
P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 23.
J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161.
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(b).
LINKS
Alois P. Heinz, Antidiagonals n = 1..37, flattened
J. H. Kwak and J. Lee, Enumeration of graph coverings and surface branched coverings, Lecture Note Series 1 (2001), Com^2MaC-KOSEF, Korea. See chapter 3. [Broken link?]
V. A. Liskovets and A. Mednykh, Enumeration of subgroups in the fundamental groups of orientable circle bundles over surfaces, Commun. in Algebra, 28, No. 4 (2000), 1717-1738.
EXAMPLE
Array T(n,k) (n >= 1, k >= 1) begins:
1, 1, 1, 1, 1, ...
1, 3, 13, 71, 461, ...
1, 7, 97, 2143, 68641, ...
1, 15, 625, 54335, 8563601, ...
MAPLE
T:= proc(n, k) option remember; k* k!^(n-1) -add(j!^(n-1) *T(n, k-j), j=1..k-1) end: seq(seq(T(d+1-k, k), k=1..d), d=1..10); # Alois P. Heinz, Oct 29 2009
MATHEMATICA
nmax = 10; t[n_, k_] := t[n, k] = k*k!^(n-1) - Sum[j!^(n-1)*t[n, k-j], {j, 1, k-1}]; Flatten[ Table[ t[n-k+1, k], {n, 1, nmax}, {k, 1, n}]] (* Jean-François Alcover, Nov 09 2011, after Maple *)
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Sep 09 2000
EXTENSIONS
More terms from Alois P. Heinz, Oct 29 2009
STATUS
approved