|
|
A206257
|
|
Values of S(1) such that any Mersenne prime with an odd exponent p divides S(p-2), where S(n) == S(n-1)^2 - 2 (mod M(p)).
|
|
2
|
|
|
14, 98, 2702, 524174, 940898, 101687054, 9034502498, 19726764302, 3826890587534, 86749292044898, 742397047217294, 144021200269567502, 832966693180608098, 27939370455248878094, 5420093847118012782734, 7998146101170906912098, 1051470266970439230972302
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..150
Wikipedia, Lucas-Lehmer primality test
|
|
FORMULA
|
Union of sequences a(0) = 14, a(1) = 2702; a(n) = 194*a(n-1) - a(n-2) and b(0) = 98, b(1) = 940898; b(n) = 9602*b(n-1) - b(n-2).
a(n) = A018844(n)^2 - 2.
|
|
MATHEMATICA
|
nn = 17; t1 = LinearRecurrence[{194, -1}, {14, 2702}, nn]; t2 = LinearRecurrence[{9602, -1}, {98, 940898}, nn]; t3 = Select[t2, # < t1[[-1]]&]; Union[t1, t3]
|
|
CROSSREFS
|
Sequence in context: A008534 A008415 A003206 * A101376 A174614 A099193
Adjacent sequences: A206254 A206255 A206256 * A206258 A206259 A206260
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Arkadiusz Wesolowski, Feb 05 2012
|
|
STATUS
|
approved
|
|
|
|