The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206257 Values of S(1) such that any Mersenne prime with an odd exponent p divides S(p-2), where S(n) == S(n-1)^2 - 2 (mod M(p)). 2
 14, 98, 2702, 524174, 940898, 101687054, 9034502498, 19726764302, 3826890587534, 86749292044898, 742397047217294, 144021200269567502, 832966693180608098, 27939370455248878094, 5420093847118012782734, 7998146101170906912098, 1051470266970439230972302 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Arkadiusz Wesolowski, Table of n, a(n) for n = 1..150 Wikipedia, Lucas-Lehmer primality test FORMULA Union of sequences a(0) = 14, a(1) = 2702; a(n) = 194*a(n-1) - a(n-2) and b(0) = 98, b(1) = 940898; b(n) = 9602*b(n-1) - b(n-2). a(n) = A018844(n)^2 - 2. MATHEMATICA nn = 17; t1 = LinearRecurrence[{194, -1}, {14, 2702}, nn]; t2 = LinearRecurrence[{9602, -1}, {98, 940898}, nn]; t3 = Select[t2, # < t1[[-1]]&]; Union[t1, t3] CROSSREFS Sequence in context: A008534 A008415 A003206 * A101376 A174614 A099193 Adjacent sequences: A206254 A206255 A206256 * A206258 A206259 A206260 KEYWORD easy,nonn AUTHOR Arkadiusz Wesolowski, Feb 05 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 24 15:36 EDT 2023. Contains 361479 sequences. (Running on oeis4.)