login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Values of S(1) such that any Mersenne prime with an odd exponent p divides S(p-2), where S(n) == S(n-1)^2 - 2 (mod M(p)).
2

%I #21 Mar 31 2012 10:24:06

%S 14,98,2702,524174,940898,101687054,9034502498,19726764302,

%T 3826890587534,86749292044898,742397047217294,144021200269567502,

%U 832966693180608098,27939370455248878094,5420093847118012782734,7998146101170906912098,1051470266970439230972302

%N Values of S(1) such that any Mersenne prime with an odd exponent p divides S(p-2), where S(n) == S(n-1)^2 - 2 (mod M(p)).

%H Arkadiusz Wesolowski, <a href="/A206257/b206257.txt">Table of n, a(n) for n = 1..150</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Lucas-Lehmer_primality_test">Lucas-Lehmer primality test</a>

%F Union of sequences a(0) = 14, a(1) = 2702; a(n) = 194*a(n-1) - a(n-2) and b(0) = 98, b(1) = 940898; b(n) = 9602*b(n-1) - b(n-2).

%F a(n) = A018844(n)^2 - 2.

%t nn = 17; t1 = LinearRecurrence[{194, -1}, {14, 2702}, nn]; t2 = LinearRecurrence[{9602, -1}, {98, 940898}, nn]; t3 = Select[t2, # < t1[[-1]]&]; Union[t1, t3]

%K easy,nonn

%O 1,1

%A _Arkadiusz Wesolowski_, Feb 05 2012