login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{d|n, d<n} A019565(A289814(d)); a product obtained from the 2-digits present in ternary expansions of proper divisors of n.
13

%I #7 Oct 18 2017 00:56:12

%S 1,1,1,2,1,2,1,2,1,4,1,6,1,6,2,12,1,6,1,4,3,4,1,36,2,2,1,12,1,36,1,36,

%T 2,12,6,30,1,10,1,240,1,180,1,20,6,20,1,1620,3,60,6,60,1,30,4,72,5,4,

%U 1,360,1,2,15,72,2,180,1,36,10,144,1,2700,1,2,90,20,6,180,1,720,1,4,1,540,12,6,2,720,1,900,3,100,1,20,10,16200,1,60,6

%N a(n) = Product_{d|n, d<n} A019565(A289814(d)); a product obtained from the 2-digits present in ternary expansions of proper divisors of n.

%H Antti Karttunen, <a href="/A293222/b293222.txt">Table of n, a(n) for n = 1..6561</a>

%F a(n) = Product_{d|n, d<n} A019565(A289814(d)).

%o (PARI)

%o A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from _M. F. Hasler_

%o A289814(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); } \\ From _Remy Sigrist_

%o A293222(n) = { my(m=1); fordiv(n,d,if(d < n,m *= A019565(A289814(d)))); m; };

%Y Cf. A019565, A289814, A293221, A293224 (restricted growth sequence transform), A293226.

%K nonn,base

%O 1,4

%A _Antti Karttunen_, Oct 03 2017