login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A167867 a(n) = 2^n*Sum_{ k=0..n } binomial(2*k,k)^3/2^k 5
1, 10, 236, 8472, 359944, 16722896, 822334816, 42068907200, 2215884717400, 119364801362800, 6545334930678816, 364137834051739200, 20502307365808906816, 1166063313963833813632, 66893439680369963627264 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The expression a(n) = B^n*Sum_{ k=0..n } binomial(2*k,k)/B^k gives A006134 for B=1, A082590 (B=2), A132310 (B=3), A002457 (B=4), A144635 (B=5), A167713 (B=16).

The expression a(n) = B^n*Sum_{ k=0..n } binomial(2*k,k)^3/B^k gives A079727 for B=1, A167867 (B=2), A167868 (B=3), A167869 (B=4), A167870 (B=16), A167871 (B=64).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

a(n) = 2^n*Sum[ Binomial[2*k,k]^3/2^k, {k,0,n} ].

Recurrence: n^3*a(n) = 2*(33*n^3 - 48*n^2 + 24*n - 4)*a(n-1) - 16*(2*n-1)^3*a(n-2). - Vaclav Kotesovec, Aug 13 2013

a(n) ~ 2^(6*n+5)/(31*(Pi*n)^(3/2)). - Vaclav Kotesovec, Aug 13 2013

MATHEMATICA

Table[2^n Sum[Binomial[2k, k]^3/2^k, {k, 0, n}], {n, 0, 30}] (* Vincenzo Librandi, Mar 26 2012 *)

CROSSREFS

Cf. A079727, A167867, A167868, A167869, A167870, A167872.

Cf. A000984, A066796, A006134, A082590, A132310, A002457, A144635, A167713, A167859.

Sequence in context: A012240 A295410 A188679 * A268080 A096331 A159497

Adjacent sequences:  A167864 A167865 A167866 * A167868 A167869 A167870

KEYWORD

nonn

AUTHOR

Alexander Adamchuk, Nov 14 2009

EXTENSIONS

More terms from Sean A. Irvine, Apr 27 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 01:04 EDT 2019. Contains 328135 sequences. (Running on oeis4.)