login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132310
a(n) = 3^n*Sum_{ k=0..n } binomial(2*k,k)/3^k.
13
1, 5, 21, 83, 319, 1209, 4551, 17085, 64125, 240995, 907741, 3428655, 12990121, 49370963, 188229489, 719805987, 2760498351, 10615101273, 40920439119, 158106581157, 612166272291, 2374756691313, 9228369037659, 35918537840577
OFFSET
0,2
COMMENTS
Simpler definition from N. J. A. Sloane, Jan 21 2009. Colin Mallows and I studied this sequence on Feb 21 1981 in connection with integration over a regular (solid) hexagon.
Hankel transform is A137717. - Paul Barry, Apr 26 2009
LINKS
FORMULA
a(n) = C(2n,n) * sum_{k=0..2n} trinomial(n,k)/C(2n,k) where trinomial(n,k) = [x^k] (1 + x + x^2)^n, where [x^k] denotes "coefficient of x^k in ...".
G.f.: A(x) = 1/sqrt(1 - 10*x + 33*x^2 - 36*x^3).
a(n) = sum_{k=0..2n} trinomial(n,k) * k!*(2*n-k)! / (n!)^2.
2*a(n) = sum(A182411(n+1,i), i=0..n). - Bruno Berselli, May 02 2012
D-finite with recurrence: n*a(n) = (7*n-2)*a(n-1) - 6*(2*n-1)*a(n-2) . - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 4^(n+1)/sqrt(Pi*n) . - Vaclav Kotesovec, Oct 20 2012
EXAMPLE
a(1) = C(2,1)*(1/1 + 1/2 + 1/1) = 2*(5/2) = 5;
a(2) = C(4,2)*(1/1 + 2/4 + 3/6 + 2/4 + 1/1) = 6*(7/2) = 21;
a(3) = C(6,3)*(1/1 + 3/6 + 6/15 + 7/20 + 6/15 + 3/6 + 1/1) = 20*(83/20) = 83.
2*a(6) = sum(A182411(7,i), i=0..6) = 3432+858+572+572+728+1092+1848 = 9102 = 2*4551. - Bruno Berselli, May 02 2012
MATHEMATICA
CoefficientList[Series[1/Sqrt[1-10*x+33*x^2-36*x^3], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
PROG
(PARI) a(n)=binomial(2*n, n)*sum(k=0, 2*n, polcoeff((1+x+x^2)^n, k)/binomial(2*n, k) )
(PARI) a(n)=sum(k=0, 2*n, polcoeff((1+x+x^2)^n, k) * k!*(2*n-k)! / (n!)^2 )
CROSSREFS
Sequence in context: A221862 A216271 A026017 * A083319 A146041 A146585
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 18 2007
STATUS
approved