OFFSET
1,1
COMMENTS
Identity: 4^x/3^(-Log[2]/Log[3] + (Log[4]/Log[3]) x)==2 More inclusive Identity: ( any a0,b0,x) a0^x/b0^(-Log[2]/Log[b0] + (Log[a0]/Log[b0]) x)==2
FORMULA
{n,m}: If m=-Log[2]/Log[3] + (Log[4]/Log[3])*n is 1% from the Integer m
EXAMPLE
{10, 12}, ->N[4^10/3^12]=1.97308
{33, 41}, ->2.02306
{52, 65}, ->1.96896
{75, 94}, ->2.01884
{94, 118} ->1.96486
MATHEMATICA
g[x_] = -Log[2]/Log[3] + (Log[4]/Log[3]) x; Delete[Union[Table[Flatten[Table[If[(g[n] - 0.02) <= m && (g[n] + 0.02 >= m), {n, m}, {}], {n, 1, m}], 1], {m, 1, 300}]], 1]; Flatten[%]
CROSSREFS
KEYWORD
nonn,uned
AUTHOR
Roger L. Bagula, Nov 24 2007
EXTENSIONS
This appears to be a mixture of two sequences? - N. J. A. Sloane, Nov 25 2005
STATUS
approved