login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079727
a(n) = 1 + C(2,1)^3 + C(4,2)^3 + ... + C(2n,n)^3.
10
1, 9, 225, 8225, 351225, 16354233, 805243257, 41229480825, 2172976383825, 117106008311825, 6423711336265041, 357470875526646609, 20131502573232075025, 1145190201805448075025, 65706503254247744075025
OFFSET
0,2
COMMENTS
a(n) seems to have an interesting congruence property: For p prime, a(p) == 8 (mod p) if and only if p == 3, 5, 7, or 13 (mod 14); i.e., iff p = 7 or p is in A003625.
From Peter Bala, Jul 12 2024: (Start)
Zhi-Wei Sun (2010) conjectured that if p is an odd prime such that the Legendre symbol (p/7) = -1 (i.e., if p == 3, 5, 6 (mod 7)) then a(p-1) == 0 (mod p^2). Otherwise, if (p/7) = 1 then a(p-1) == 4*x^2 - 2*p (mod p^2) where p = x^2 + 7*y^2 with x, y in Z.
The author’s twin brother Zhi_Hong Sun confirmed the conjecture in the case (p/7) = -1.
Conjectures: if prime p is in A003625 then
1) a(p^2) == 8 + p^2 (mod p^3)
2) a(p*(p-1)) == p^2 (mod p^3)
3) a((p^2-1)/2) == p^2 (mod p^4) (all checked up to p = 101).
4) if n is a product of distinct primes from A003625 then a((n-1)/2) is divisible by n^2. (End)
LINKS
Zhi-Hong Sun, Congruences concerning Legendre polynomials II", Theorem 3.2, arXiv:1012.3898v2 [math.NT], 2010-2012.
Zhi-Wei Sun, Open conjectures on congruences, Part A, conjecture A1, arXiv:0911.5665v59 [math.NT], 2009-2011.
FORMULA
a(n) = Sum_{k=0..n} binomial(2*k,k)^3.
G.f.: hypergeom([1/2, 1/2, 1/2], [1, 1], 64*x)/(1-x). - Vladeta Jovovic, Feb 18 2003
G.f.: hypergeom([1/4,1/4],[1],64*x)^2/(1-x). - Mark van Hoeij, Nov 17 2011
Recurrence: (n+2)^3*a(n+2)-(5*n+8)*(13*n^2+38*n+28)*a(n+1)+8*(2n+3)^3*a(n)=0. - Emanuele Munarini, Nov 15 2016
a(n) ~ 2^(6*n+6) / (63*Pi^(3/2)*n^(3/2)). - Vaclav Kotesovec, Nov 16 2016
MATHEMATICA
Table[Sum[Binomial[2 k, k]^3, {k, 0, n}], {n, 0, 14}] (* Michael De Vlieger, Nov 15 2016 *)
PROG
(PARI) a(n)=sum(k=0, n, binomial(2*k, k)^3)
(Maxima) makelist(sum(binomial(2*k, k)^3, k, 0, n), n, 0, 12); /* Emanuele Munarini, Nov 15 2016 */
(Magma) [&+[Binomial(2*k, k)^3: k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Nov 16 2016
CROSSREFS
Cf. A002476.
Cf. Sum_{k = 0..n} binomial(2*k, k)^m: A006134 (m=1), A115257 (m=2), this sequence (m=3).
Sequence in context: A012831 A012749 A188662 * A251579 A128492 A294971
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Feb 17 2003
STATUS
approved