OFFSET
0,2
COMMENTS
The corresponding numerators are given in A294970. There details are given.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..575
FORMULA
a(n) = numerator(r(n)) with the rationals r(n) = Sum_{k=0..n} (-1)^k/(2*k+1)^2.
For r(n) in terms of the Hurwitz Zeta function or the trigamma function see A294970.
EXAMPLE
See A294970.
MATHEMATICA
Table[Denominator[Sum[(-1)^k/(2*k+1)^2, {k, 0, n}]], {n, 0, 20}] (* Vaclav Kotesovec, Nov 15 2017 *)
PROG
(PARI) for(n=0, 20, print1(denominator(sum(k=0, n, (-1)^k/(2*k+1)^2)), ", ")) \\ G. C. Greubel, Aug 22 2018
(Magma) [Denominator((&+[(-1)^k/(2*k+1)^2: k in [0..n]])): n in [0..20]]; // G. C. Greubel, Aug 22 2018
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Nov 15 2017
STATUS
approved