OFFSET
0,2
COMMENTS
The denominators are given in A294973.
The continued fraction expansion of sqrt(7)/2 is 1, repeat(3, 10, 3, 2).
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,0,0,254,0,0,0,-1).
FORMULA
From Colin Barker, Nov 19 2017: (Start)
G.f.: (1 + 4*x + 41*x^2 + 127*x^3 + 41*x^4 - 4*x^5 + x^6 - x^7) / ((1 - 16*x^2 + x^4)*(1 + 16*x^2 + x^4)).
a(n) = 254*a(n-4) - a(n-8) for n > 7.
(End)
The proof of the g.f. runs like the one given for the denominators in A294973. The recurrence for a(n) is the same but the input is now a(0) = b(0) = 1 and a(-1) = 1, (a(-2) = 0). - Wolfdieter Lang, Nov 19 2017
MATHEMATICA
Numerator[Convergents[Sqrt[7]/2, 30]] (* Vaclav Kotesovec, Nov 19 2017 *)
PROG
(PARI) Vec((1 + 4*x + 41*x^2 + 127*x^3 + 41*x^4 - 4*x^5 + x^6 - x^7) / ((1 - 16*x^2 + x^4)*(1 + 16*x^2 + x^4)) + O(x^40)) \\ Colin Barker, Nov 21 2017
CROSSREFS
KEYWORD
nonn,cofr,frac,easy
AUTHOR
Wolfdieter Lang, Nov 18 2017
STATUS
approved