login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294973
Denominators of the continued fraction convergents to sqrt(7)/2.
4
1, 3, 31, 96, 223, 765, 7873, 24384, 56641, 194307, 1999711, 6193440, 14386591, 49353213, 507918721, 1573109376, 3654137473, 12535521795, 129009355423, 399563588064, 928136531551, 3183973182717, 32767868358721, 101487578258880, 235743024876481, 808716652888323, 8322909553759711, 25777445314167456, 59877800182094623, 205410845860451325
OFFSET
0,2
COMMENTS
The numerators are given in A294972.
The continued fraction of sqrt(7)/2 is [1, repeat(3,10,3,2)].
FORMULA
From Colin Barker, Nov 19 2017: (Start)
G.f.: (1 + 3*x - x^2)*(1 + 32*x^2 + x^4) / ((1 - 16*x^2 + x^4)*(1 + 16*x^2 + x^4)).
a(n) = 254*a(n-4) - a(n-8) for n > 7.
(End)
The g.f. is correct: denominator recurrence a(n) = b(n)*a(n-1) + a(n-2), a(-1) = 0, a(0) = 1, (a(-2) = a(0) = 1) with b(n) modulo 4 from the continued fraction given above: b(0) = 1, b(4*(k+1)) = 2, b(4*k+1) = 3 = b(4*k+3) and b(4*k+2) = 10, for k >= 0. The 4-section is G(x) = Sum_{k>=0} a(k)*x^k = G_0(x^4) + x*G_1(x^4) + x^2*G_2(x^4) + x^3*G_3(x^4) with G_j(x) = Sum_{k>=0} a(4*k+j)*x^k, for j=0..3. The recurrence leads to four equations (omit the x here): G_1 = 3*G_0 + x*G_3, G_2 = 10*G_1 + G_4, G_3 = 3*G_2 + G_1, G_0 = 2*x*G_3 +1 + x*G_2 (using a(-2) = 1). This can be solved to obtain for G(x) = (1 + 3*x + 31*x^2 + 96*x^3 - 31*x^4 + 3*x^5 - x^6)/(1 - 254*x^4 + x^8), and the numerator and denominator factorize like given in the above conjecture. - Wolfdieter Lang, Nov 19 2017
MATHEMATICA
Denominator[Convergents[Sqrt[7]/2, 30]] (* Vaclav Kotesovec, Nov 19 2017 *)
PROG
(PARI) Vec((1 + 3*x - x^2)*(1 + 32*x^2 + x^4) / ((1 - 16*x^2 + x^4)*(1 + 16*x^2 + x^4)) + O(x^40)) \\ Colin Barker, Nov 21 2017
CROSSREFS
Sequence in context: A243471 A152417 A182232 * A307711 A077547 A104312
KEYWORD
nonn,cofr,frac,easy
AUTHOR
Wolfdieter Lang, Nov 18 2017
STATUS
approved