OFFSET
0,2
FORMULA
G.f.: Product_{n>=1} (1-q^n)^A294975(n).
a(n) ~ -Gamma(1/3)^2 * Gamma(1/4)^(10/3) * exp(2*Pi*n) / (16 * 2^(1/12) * 3^(7/12) * Pi^(5/2) * Gamma(1/12) * n^(13/12)). - Vaclav Kotesovec, Jun 03 2018
Equivalently, a(n) ~ -Gamma(1/3) * Gamma(1/4)^(7/3) * exp(2*Pi*n) / (2^(23/6) * 3^(23/24) * Pi^2 * sqrt(1 + sqrt(3)) * n^(13/12)). - Vaclav Kotesovec, Nov 26 2024
MATHEMATICA
terms = 13;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E6[x]/E2[x]^6)^(1/12) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Feb 12 2018
STATUS
approved