%I #19 Nov 26 2024 16:11:13
%S 1,-30,-11340,-3912600,-1520905170,-636170644008,-278687199310200,
%T -126000360658968000,-58290111778749466140,-27440829122946510954630,
%U -13096614404248661886145848,-6320198941502349713305002120,-3077986352751848627729986859400
%N Coefficients in expansion of (E_6/E_2^6)^(1/12).
%F G.f.: Product_{n>=1} (1-q^n)^A294975(n).
%F a(n) ~ -Gamma(1/3)^2 * Gamma(1/4)^(10/3) * exp(2*Pi*n) / (16 * 2^(1/12) * 3^(7/12) * Pi^(5/2) * Gamma(1/12) * n^(13/12)). - _Vaclav Kotesovec_, Jun 03 2018
%F Equivalently, a(n) ~ -Gamma(1/3) * Gamma(1/4)^(7/3) * exp(2*Pi*n) / (2^(23/6) * 3^(23/24) * Pi^2 * sqrt(1 + sqrt(3)) * n^(13/12)). - _Vaclav Kotesovec_, Nov 26 2024
%t terms = 13;
%t E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
%t E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
%t (E6[x]/E2[x]^6)^(1/12) + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 26 2018 *)
%Y Cf. A109817, A289565, A294974, A294975.
%K sign
%O 0,2
%A _Seiichi Manyama_, Feb 12 2018