OFFSET
0,2
COMMENTS
Also coefficients in expansion of (E_8/E_2^8)^(1/16).
FORMULA
Convolution inverse of A294974.
G.f.: Product_{n>=1} (1-q^n)^(-A294626(n)).
a(n) ~ -(-1)^n * Pi^(5/4) * exp(Pi*sqrt(3)*n) / (2^(19/8) * 3^(9/8) * Gamma(2/3)^(9/4) * Gamma(7/8) * n^(9/8)). - Vaclav Kotesovec, Jun 03 2018
MATHEMATICA
terms = 14;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]/E2[x]^4)^(1/8) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Feb 12 2018
STATUS
approved