login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046198
Indices of heptagonal numbers (A000566) which are also pentagonal.
3
1, 42, 2585, 160210, 9930417, 615525626, 38152658377, 2364849293730, 146582503552865, 9085750370983882, 563169940497447801, 34907450560470779762, 2163698764808690897425, 134114415967578364860570, 8312930091225049930457897, 515267551239985517323529026
OFFSET
1,2
COMMENTS
As n increases, this sequence is approximately geometric with common ratio r = lim_{n->infinity} a(n)/a(n-1) = (4+sqrt(15))^2 = 31 + 8*sqrt(15). - Ant King, Dec 15 2011
LINKS
FORMULA
From Ant King, Dec 15 2011: (Start)
a(n) = 63*a(n-1) - 63*a(n-2) + a(n-3).
a(n) = 62*a(n-1) - a(n-2) - 18.
a(n) = (1/60)*((9-sqrt(15))*(4+sqrt(15))^(2*n-1) + (9+sqrt(15))*(4-sqrt(15))^(2*n-1)+18).
a(n) = ceiling((1/60)*(9-sqrt(15))*(4+sqrt(15))^(2*n-1)).
G.f.: x*(1-21*x+2*x^2)/((1-x)*(1-62*x+x^2)).
(End)
MATHEMATICA
LinearRecurrence[{63, -63, 1}, {1, 42, 2585}, 14] (* Ant King, Dec 15 2011 *)
PROG
(PARI) Vec(-x*(2*x^2-21*x+1)/((x-1)*(x^2-62*x+1)) + O(x^30)) \\ Colin Barker, Jun 23 2015
CROSSREFS
Sequence in context: A187365 A294978 A180371 * A361371 A214580 A377975
KEYWORD
nonn,easy
STATUS
approved