login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Indices of heptagonal numbers (A000566) which are also pentagonal.
3

%I #23 Jun 27 2019 01:29:09

%S 1,42,2585,160210,9930417,615525626,38152658377,2364849293730,

%T 146582503552865,9085750370983882,563169940497447801,

%U 34907450560470779762,2163698764808690897425,134114415967578364860570,8312930091225049930457897,515267551239985517323529026

%N Indices of heptagonal numbers (A000566) which are also pentagonal.

%C As n increases, this sequence is approximately geometric with common ratio r = lim_{n->infinity} a(n)/a(n-1) = (4+sqrt(15))^2 = 31 + 8*sqrt(15). - _Ant King_, Dec 15 2011

%H Colin Barker, <a href="/A046198/b046198.txt">Table of n, a(n) for n = 1..558</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HeptagonalPentagonalNumber.html">Heptagonal Pentagonal Number.</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (63,-63,1)

%F From _Ant King_, Dec 15 2011: (Start)

%F a(n) = 63*a(n-1) - 63*a(n-2) + a(n-3).

%F a(n) = 62*a(n-1) - a(n-2) - 18.

%F a(n) = (1/60)*((9-sqrt(15))*(4+sqrt(15))^(2*n-1) + (9+sqrt(15))*(4-sqrt(15))^(2*n-1)+18).

%F a(n) = ceiling((1/60)*(9-sqrt(15))*(4+sqrt(15))^(2*n-1)).

%F G.f.: x*(1-21*x+2*x^2)/((1-x)*(1-62*x+x^2)).

%F (End)

%t LinearRecurrence[{63, -63, 1}, {1, 42, 2585}, 14] (* _Ant King_, Dec 15 2011 *)

%o (PARI) Vec(-x*(2*x^2-21*x+1)/((x-1)*(x^2-62*x+1)) + O(x^30)) \\ _Colin Barker_, Jun 23 2015

%Y Cf. A046199, A048900.

%K nonn,easy

%O 1,2

%A _Eric W. Weisstein_