Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Nov 22 2017 08:57:47
%S 1,3,31,96,223,765,7873,24384,56641,194307,1999711,6193440,14386591,
%T 49353213,507918721,1573109376,3654137473,12535521795,129009355423,
%U 399563588064,928136531551,3183973182717,32767868358721,101487578258880,235743024876481,808716652888323,8322909553759711,25777445314167456,59877800182094623,205410845860451325
%N Denominators of the continued fraction convergents to sqrt(7)/2.
%C The numerators are given in A294972.
%C The continued fraction of sqrt(7)/2 is [1, repeat(3,10,3,2)].
%H Colin Barker, <a href="/A294973/b294973.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,254,0,0,0,-1).
%F From _Colin Barker_, Nov 19 2017: (Start)
%F G.f.: (1 + 3*x - x^2)*(1 + 32*x^2 + x^4) / ((1 - 16*x^2 + x^4)*(1 + 16*x^2 + x^4)).
%F a(n) = 254*a(n-4) - a(n-8) for n > 7.
%F (End)
%F The g.f. is correct: denominator recurrence a(n) = b(n)*a(n-1) + a(n-2), a(-1) = 0, a(0) = 1, (a(-2) = a(0) = 1) with b(n) modulo 4 from the continued fraction given above: b(0) = 1, b(4*(k+1)) = 2, b(4*k+1) = 3 = b(4*k+3) and b(4*k+2) = 10, for k >= 0. The 4-section is G(x) = Sum_{k>=0} a(k)*x^k = G_0(x^4) + x*G_1(x^4) + x^2*G_2(x^4) + x^3*G_3(x^4) with G_j(x) = Sum_{k>=0} a(4*k+j)*x^k, for j=0..3. The recurrence leads to four equations (omit the x here): G_1 = 3*G_0 + x*G_3, G_2 = 10*G_1 + G_4, G_3 = 3*G_2 + G_1, G_0 = 2*x*G_3 +1 + x*G_2 (using a(-2) = 1). This can be solved to obtain for G(x) = (1 + 3*x + 31*x^2 + 96*x^3 - 31*x^4 + 3*x^5 - x^6)/(1 - 254*x^4 + x^8), and the numerator and denominator factorize like given in the above conjecture. - _Wolfdieter Lang_, Nov 19 2017
%t Denominator[Convergents[Sqrt[7]/2, 30]] (* _Vaclav Kotesovec_, Nov 19 2017 *)
%o (PARI) Vec((1 + 3*x - x^2)*(1 + 32*x^2 + x^4) / ((1 - 16*x^2 + x^4)*(1 + 16*x^2 + x^4)) + O(x^40)) \\ _Colin Barker_, Nov 21 2017
%Y Cf. A242703, A294972.
%K nonn,cofr,frac,easy
%O 0,2
%A _Wolfdieter Lang_, Nov 18 2017