

A079726


a(1)=1, a(n) is the smallest integer > a(n1) such that a(n) is even if k(n)=1, a(n) is odd if k(n)=2, where k(n) denotes the nth term of the Kolakoski sequence (A000002).


0



1, 2, 4, 5, 7, 8, 9, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 72, 73, 74, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 92, 93, 95, 96
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..72.


FORMULA

a(n) is conjectured to be asymptotic to 4/3*n.


EXAMPLE

Kolakoski sequence begins: 1,2,2,1,1,2,1, ....from the rule, a(2) > a(1)=1 and even, so a(2)=2. a(3)>a(2)=2 and even, so a(3)=4. a(4)>a(3)=4 and odd so a(4)=5...


CROSSREFS

Cf. A000002.
Sequence in context: A175969 A183573 A187895 * A047498 A026367 A039069
Adjacent sequences: A079723 A079724 A079725 * A079727 A079728 A079729


KEYWORD

nonn


AUTHOR

Benoit Cloitre, Feb 17 2003


STATUS

approved



