OFFSET
0,2
COMMENTS
The expression a(n) = B^n*Sum_{k=0..n} binomial(2*k,k)/B^k gives A006134 for B=1, A082590 (B=2), A132310 (B=3), A002457 (B=4), A144635 (B=5), A167713 (B=16).
The expression a(n) = B^n*Sum_{k=0..n} binomial(2*k,k)^3/B^k gives A079727 for B=1, A167867 (B=2), A167868 (B=3), A167869 (B=4), A167870 (B=16), A167871 (B=64).
p^2 divides all a(n) from n = (p-1)/2 to n = p-1 for prime p of the form p = 4k+3, p = {3,7,11,19,23,31,43,47,59,...} = A002145.
p^2 divides all a(n) from n = (2p-1 - (p-1)/2) to n = 2p-1 for prime p of the form p = 4k+3.
p^2 divides all a(n) from n = (3p-1 - (p-1)/2) to n = 3p-1 for prime p of the form p = 4k+3.
p^2 divides all a(n) from n = (p^2-1)/2 to n = p^2-1 for prime p of the form p = 4k+3.
REFERENCES
W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd ed., Wiley, 1968, p. 361.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
FORMULA
a(n) = 64^n * Sum_{k=0..n} binomial(2*k,k)^3 / 64^k.
Recurrence: n^3*a(n) = 8*(4*n-1)*(4*n^2 - 2*n + 1)*a(n-1) - 512*(2*n-1)^3 *a(n-2). - Vaclav Kotesovec, Aug 14 2013
a(n) ~ 64^n*(Pi/GAMMA(3/4)^4 - 2/(Pi^(3/2)*sqrt(n))). - Vaclav Kotesovec, Aug 14 2013
MATHEMATICA
Table[64^n Sum[Binomial[2k, k]^3/64^k, {k, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, Mar 26 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Nov 14 2009
EXTENSIONS
More terms from Sean A. Irvine, Apr 25 2010
STATUS
approved