login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054557
Number of labeled pure 2-complexes on n nodes (0-simplexes) with 5 2-simplexes and 10 1-simplexes.
8
72, 4824, 32256, 127008, 378000, 940464, 2062368, 4115232, 7629336, 13333320, 22198176, 35485632, 54800928, 82149984, 120000960, 171350208, 239792616, 329596344, 445781952, 594205920, 781648560, 1015906320, 1305888480
OFFSET
5,1
COMMENTS
Number of {T_1,T_2,...,T_k} where T_i,i=1..k are 3-subsets of an n-set such that {D | D is 2-subset of T_i for some i=1..k} has l elements; k=5,l=10.
REFERENCES
V. Jovovic, On the number of two-dimensional simplicial complexes (in Russian), Metody i sistemy tekhnicheskoy diagnostiki, Vypusk 16, Mezhvuzovskiy zbornik nauchnykh trudov, Izdatelstvo Saratovskogo universiteta, 1991.
FORMULA
a(n) = 72*C(n, 5)+4392*C(n, 6) = n*(n-1)*(n-2)*(n-3)*(n-4)*(61*n-299)/10.
G.f.: 72*x^5*(1+60*x)/(1-x)^7. - Colin Barker, Jan 19 2012
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). Vincenzo Librandi, Apr 28 2012
MATHEMATICA
CoefficientList[Series[72*(1+60*x)/(1-x)^7, {x, 0, 30}], x] (* Vincenzo Librandi, Apr 28 2012 *)
PROG
(Magma) I:=[72, 4824, 32256, 127008, 378000, 940464, 2062368]; [n le 7 select I[n] else 7*Self(n-1)-21*Self(n-2)+35*Self(n-3)-35*Self(n-4)+21*Self(n-5)-7*Self(n-6)+Self(n-7): n in [1..25]]; // Vincenzo Librandi, Apr 28 2012
CROSSREFS
Sequence in context: A225831 A286930 A327375 * A167871 A103861 A358117
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Apr 10 2000
EXTENSIONS
More terms from James A. Sellers, Apr 11 2000
STATUS
approved