login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054558
Number of labeled pure 2-complexes on n nodes (0-simplexes) with 5 2-simplexes and 9 1-simplexes.
1
150, 960, 3605, 10360, 25200, 54600, 108570, 201960, 356070, 600600, 975975, 1536080, 2351440, 3512880, 5135700, 7364400, 10377990, 14395920, 19684665, 26565000, 35420000, 46703800, 60951150, 78787800, 100941750, 128255400
OFFSET
5,1
COMMENTS
Number of {T_1,T_2,...,T_k} where T_i, i=1..k are 3-subsets of an n-set such that {D | D is 2-subset of T_i for some i=1..k} has l elements; k=5, l=9.
REFERENCES
V. Jovovic, On the number of two-dimensional simplicial complexes (in Russian), Metody i sistemy tekhnicheskoy diagnostiki, Vypusk 16, Mezhvuzovskiy zbornik nauchnykh trudov, Izdatelstvo Saratovskogo universiteta, 1991.
FORMULA
a(n) = 150*C(n,5) +60*C(n,6) +35*C(n,7) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n^2+n+150)/144.
G.f.: 5*x^5*(30-48*x+25*x^2)/(1-x)^8. - Colin Barker, Jun 21 2012
MAPLE
A054558:=n->n*(n-1)*(n-2)*(n-3)*(n-4)*(n^2+n+150)/144; seq(A054558(n), n=5..30); # Wesley Ivan Hurt, Apr 29 2014
MATHEMATICA
Table[n*(n - 1)*(n - 2)*(n - 3)*(n - 4)*(n^2 + n + 150)/144, {n, 5, 30}] (* Wesley Ivan Hurt, Apr 29 2014 *)
CROSSREFS
Cf. A054557.
Sequence in context: A273322 A206066 A140671 * A250544 A251801 A211554
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Apr 10 2000
STATUS
approved