login
A273322
Wiener index of graphs of f.c.c. unit cells in a line = Sum of distances in face-centered cubic grid unit cells connected in a row.
2
150, 536, 1336, 2712, 4826, 7840, 11916, 17216, 23902, 32136, 42080, 53896, 67746, 83792, 102196, 123120, 146726, 173176, 202632, 235256, 271210, 310656, 353756, 400672, 451566, 506600, 565936, 629736, 698162, 771376, 849540, 932816, 1021366
OFFSET
1,1
LINKS
Hamzeh Mujahed, Benedek Nagy, Wiener index on rows of unit cells of the face-centred cubic lattice, Acta Crystallographica, Section A: Foundations and Advances, Volume A72, Part 2 (2016), 243-249.
Hamzeh Mujahed, Benedek Nagy, Exact Formula for Computing the Hyper-Wiener Index on Rows of Unit Cells of the Face-Centred Cubic Lattice, Analele Universitatii Ovidius Constanţa-Seria Matematica Vol. 26(1), 2018, 169-187.
FORMULA
a(n) = 27*n^3 + 45*n^2 + 62*n + 16.
From Colin Barker, May 20 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4.
G.f.: 2*x*(75 - 32*x + 46*x^2 - 8*x^3) / (1-x)^4.
(End)
MATHEMATICA
Table[27 n^3 + 45 n^2 + 62 n + 16, {n, 33}] (* or *)
Rest@ CoefficientList[Series[2 x (75 - 32 x + 46 x^2 - 8 x^3)/(1 - x)^4, {x, 0, 33}], x] (* Michael De Vlieger, May 20 2016 *)
LinearRecurrence[{4, -6, 4, -1}, {150, 536, 1336, 2712}, 40] (* Harvey P. Dale, Dec 04 2018 *)
PROG
(PARI) Vec(2*x*(75-32*x+46*x^2-8*x^3)/(1-x)^4 + O(x^50)) \\ Colin Barker, May 20 2016
CROSSREFS
Sequence in context: A210643 A211550 A212465 * A206066 A140671 A054558
KEYWORD
nonn,easy
AUTHOR
Benedek Nagy, May 20 2016
STATUS
approved