The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A184998 Smallest number having exactly n partitions into distinct parts greater than 1, with each part divisible by the next. 3
 1, 0, 6, 14, 12, 18, 24, 40, 36, 30, 48, 42, 75, 60, 72, 66, 80, 105, 84, 114, 102, 90, 120, 138, 132, 126, 186, 156, 150, 170, 180, 182, 310, 222, 200, 272, 434, 234, 198, 320, 273, 308, 210, 354, 252, 300, 360, 372, 392, 500, 366, 315 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 FORMULA a(n) = min { k : A167865(k) = n }. EXAMPLE a(7) = 40, because A167865(40) = 7 and A167865(m) <> 7 for all m<40.  The 7 partitions of 40 into distinct parts greater than 1, with each part divisible by the next are: [40], [38,2], [36,4], [35,5], [32,8], [30,10], [24,12,4]. MAPLE with(numtheory): a:= proc() local t, a, b;       t:= -1;       a:= proc() -1 end;       b:= proc(n) option remember;             `if`(n=0, 1, add(b((n-d)/d), d=divisors(n) minus{1}))           end:       proc(n) local h;         while a(n) = -1 do           t:= t+1;           h:= b(t);           if a(h) = -1 then a(h):= t fi         od; a(n)       end     end(): seq(a(n), n=0..100); MATHEMATICA a[n0_] := Module[{t = -1, a, b}, a[_] = -1; b[n_] := b[n] = If[n == 0, 1, Sum[b[(n - d)/d], {d, Divisors[n] ~Complement~ {1}}]]; While[a[n] == -1, t++; h = b[t]; If[a[h] == -1, a[h] = t]]; a[n0]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, May 21 2018, translated from Maple *) CROSSREFS Cf. A167865, A184999. Sequence in context: A265029 A329065 A338419 * A322561 A079010 A324814 Adjacent sequences:  A184995 A184996 A184997 * A184999 A185000 A185001 KEYWORD nonn,look AUTHOR Alois P. Heinz, Mar 28 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 21:49 EST 2022. Contains 350565 sequences. (Running on oeis4.)