OFFSET
1,1
COMMENTS
a(n) is the prime difference d >= 6, following [42424] difference pattern defining A022008.
EXAMPLE
n=2: A022008(2)=97, corresponding sextuplet is {97, 101, 103, 107, 109, 113=97+16}, nextprime(113) - 113 = 127 - 113 = 14, so a(2)=14. Constraints for present terms: (a) are incongruent to 4 modulo 6; (b) Mod(a(n), 30) = {0, 6, 8, 14, 18, 20, 24, 26}; 6 occurs only once; (c) further prohibited values like e.g. 20 etc.
MATHEMATICA
d[x_] := Prime[x+1]-Prime[x]; Do[If[Equal[d[n], 4]&&Equal[d[n+1], 2]&& Equal[d[n+2], 4]&&Equal[d[n+3], 2]&& Equal[d[n+4], 4], Print[d[n+5]]], {n, 1, 100000}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 21 2003
STATUS
approved