login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336158
The least number with the prime signature of the odd part of n: a(n) = A046523(A000265(n)).
21
1, 1, 2, 1, 2, 2, 2, 1, 4, 2, 2, 2, 2, 2, 6, 1, 2, 4, 2, 2, 6, 2, 2, 2, 4, 2, 8, 2, 2, 6, 2, 1, 6, 2, 6, 4, 2, 2, 6, 2, 2, 6, 2, 2, 12, 2, 2, 2, 4, 4, 6, 2, 2, 8, 6, 2, 6, 2, 2, 6, 2, 2, 12, 1, 6, 6, 2, 2, 6, 6, 2, 4, 2, 2, 12, 2, 6, 6, 2, 2, 16, 2, 2, 6, 6, 2, 6, 2, 2, 12, 6, 2, 6, 2, 6, 2, 2, 4, 12, 4, 2, 6, 2, 2, 30
OFFSET
1,3
LINKS
FORMULA
a(n) = A046523(A000265(n)) = A046523(A064989(n)).
A000005(a(n)) = A001227(n).
A001221(a(n)) = A005087(n).
A001222(a(n)) = A087436(n).
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
(Python)
from math import prod
from sympy import factorint, prime
def A336158(n): return prod(prime(i+1)**e for i, e in enumerate(sorted(factorint(n>>(~n&n-1).bit_length()).values(), reverse=True))) # Chai Wah Wu, Sep 16 2022
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 11 2020
STATUS
approved