OFFSET
1,2
COMMENTS
LINKS
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {} 37: {12} 86: {1,14}
2: {1} 39: {2,6} 87: {2,10}
3: {2} 41: {13} 89: {24}
4: {1,1} 43: {14} 91: {4,6}
5: {3} 47: {15} 94: {1,15}
7: {4} 49: {4,4} 97: {25}
8: {1,1,1} 52: {1,1,6} 101: {26}
9: {2,2} 53: {16} 103: {27}
11: {5} 58: {1,10} 104: {1,1,1,6}
13: {6} 59: {17} 107: {28}
16: {1,1,1,1} 61: {18} 109: {29}
17: {7} 64: {1,1,1,1,1,1} 111: {2,12}
19: {8} 65: {3,6} 113: {30}
23: {9} 67: {19} 116: {1,1,10}
25: {3,3} 71: {20} 117: {2,2,6}
26: {1,6} 73: {21} 121: {5,5}
27: {2,2,2} 74: {1,12} 122: {1,18}
29: {10} 79: {22} 125: {3,3,3}
31: {11} 81: {2,2,2,2} 127: {31}
32: {1,1,1,1,1} 83: {23} 128: {1,1,1,1,1,1,1}
For example, the prime indices of 117 are {2,2,6}, of which only 2 is already in the sequence, so 117 is in the sequence.
MATHEMATICA
aQ[n_]:=Length[Select[PrimePi/@First/@If[n==1, {}, FactorInteger[n]], aQ]]<=1;
Select[Range[100], aQ]
CROSSREFS
Contains all prime powers A000961.
Numbers S without all prime indices in S are A324694.
Numbers S without any prime indices in S are A324695.
Numbers S with at most one prime index in S are A331784.
Numbers S with exactly one prime index in S are A331785.
Numbers S with exactly one distinct prime index in S are A331913.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 01 2020
STATUS
approved