login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A030230 Numbers that have an odd number of distinct prime divisors. 19
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 30, 31, 32, 37, 41, 42, 43, 47, 49, 53, 59, 60, 61, 64, 66, 67, 70, 71, 73, 78, 79, 81, 83, 84, 89, 90, 97, 101, 102, 103, 105, 107, 109, 110, 113, 114, 120, 121, 125, 126, 127, 128, 130, 131, 132, 137, 138, 139, 140, 149 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
H. Helfgott and A. Ubis, Primos, paridad y análisis, arXiv:1812.08707 [math.NT], Dec. 2018.
FORMULA
From Benoit Cloitre, Dec 08 2002: (Start)
k such that Sum_{d|k} mu(d)*tau(d) = (-1)^omega(k) = -1 where mu(d) = A008683(d), tau(d) = A000005(d) and omega(d) = A001221(d).
k such that A023900(k) < 0. (End)
gcd(A008472(a(n)), A007947(a(n))) > 1; see A014963. - Labos Elemer, Mar 26 2003
A076479(a(n)) = -1. - Reinhard Zumkeller, Jun 01 2013
MAPLE
q:= n-> is(nops(ifactors(n)[2])::odd):
select(q, [$1..150])[]; # Alois P. Heinz, Feb 12 2021
MATHEMATICA
(* Prior to version 7.0 *) littleOmega[n_] := Length[FactorInteger[n]]; Select[ Range[2, 149], (-1)^littleOmega[#] == -1 &] (* Jean-François Alcover, Nov 30 2011, after Benoit Cloitre *)
(* Version 7.0+ *) Select[Range[2, 149], (-1)^PrimeNu[#] == -1 &]
Select[Range[1000], OddQ[PrimeNu[#]]&] (* Harvey P. Dale, Nov 27 2012 *)
PROG
(Haskell)
a030230 n = a030230_list !! (n-1)
a030230_list = filter (odd . a001221) [1..]
-- Reinhard Zumkeller, Aug 14 2011
(PARI) is(n)=omega(n)%2 \\ Charles R Greathouse IV, Sep 14 2015
CROSSREFS
Cf. A076479.
Sequence in context: A331912 A326848 A328957 * A366914 A089352 A086486
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 10 21:37 EDT 2024. Contains 375795 sequences. (Running on oeis4.)