OFFSET
1,1
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
Mats Granvik, Mathematica program to compute the relation to the Dirichlet inverse of the Euler totient function
H. Helfgott and A. Ubis, Primos, paridad y análisis, arXiv:1812.08707 [math.NT], Dec. 2018.
FORMULA
From Benoit Cloitre, Dec 08 2002: (Start)
k such that Sum_{d|k} mu(d)*tau(d) = (-1)^omega(k) = -1 where mu(d) = A008683(d), tau(d) = A000005(d) and omega(d) = A001221(d).
k such that A023900(k) < 0. (End)
A076479(a(n)) = -1. - Reinhard Zumkeller, Jun 01 2013
MAPLE
q:= n-> is(nops(ifactors(n)[2])::odd):
select(q, [$1..150])[]; # Alois P. Heinz, Feb 12 2021
MATHEMATICA
(* Prior to version 7.0 *) littleOmega[n_] := Length[FactorInteger[n]]; Select[ Range[2, 149], (-1)^littleOmega[#] == -1 &] (* Jean-François Alcover, Nov 30 2011, after Benoit Cloitre *)
(* Version 7.0+ *) Select[Range[2, 149], (-1)^PrimeNu[#] == -1 &]
Select[Range[1000], OddQ[PrimeNu[#]]&] (* Harvey P. Dale, Nov 27 2012 *)
PROG
(Haskell)
a030230 n = a030230_list !! (n-1)
a030230_list = filter (odd . a001221) [1..]
-- Reinhard Zumkeller, Aug 14 2011
(PARI) is(n)=omega(n)%2 \\ Charles R Greathouse IV, Sep 14 2015
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved