login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030230
Numbers that have an odd number of distinct prime divisors.
20
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 30, 31, 32, 37, 41, 42, 43, 47, 49, 53, 59, 60, 61, 64, 66, 67, 70, 71, 73, 78, 79, 81, 83, 84, 89, 90, 97, 101, 102, 103, 105, 107, 109, 110, 113, 114, 120, 121, 125, 126, 127, 128, 130, 131, 132, 137, 138, 139, 140, 149
OFFSET
1,1
FORMULA
From Benoit Cloitre, Dec 08 2002: (Start)
k such that Sum_{d|k} mu(d)*tau(d) = (-1)^omega(k) = -1 where mu(d) = A008683(d), tau(d) = A000005(d) and omega(d) = A001221(d).
k such that A023900(k) < 0. (End)
gcd(A008472(a(n)), A007947(a(n))) > 1; see A014963. - Labos Elemer, Mar 26 2003
A076479(a(n)) = -1. - Reinhard Zumkeller, Jun 01 2013
MAPLE
q:= n-> is(nops(ifactors(n)[2])::odd):
select(q, [$1..150])[]; # Alois P. Heinz, Feb 12 2021
MATHEMATICA
(* Prior to version 7.0 *) littleOmega[n_] := Length[FactorInteger[n]]; Select[ Range[2, 149], (-1)^littleOmega[#] == -1 &] (* Jean-François Alcover, Nov 30 2011, after Benoit Cloitre *)
(* Version 7.0+ *) Select[Range[2, 149], (-1)^PrimeNu[#] == -1 &]
Select[Range[1000], OddQ[PrimeNu[#]]&] (* Harvey P. Dale, Nov 27 2012 *)
PROG
(Haskell)
a030230 n = a030230_list !! (n-1)
a030230_list = filter (odd . a001221) [1..]
-- Reinhard Zumkeller, Aug 14 2011
(PARI) is(n)=omega(n)%2 \\ Charles R Greathouse IV, Sep 14 2015
CROSSREFS
KEYWORD
nonn,easy,nice
STATUS
approved