login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that have an odd number of distinct prime divisors.
20

%I #51 Feb 12 2021 20:57:32

%S 2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,29,30,31,32,37,41,42,43,47,49,

%T 53,59,60,61,64,66,67,70,71,73,78,79,81,83,84,89,90,97,101,102,103,

%U 105,107,109,110,113,114,120,121,125,126,127,128,130,131,132,137,138,139,140,149

%N Numbers that have an odd number of distinct prime divisors.

%H T. D. Noe, <a href="/A030230/b030230.txt">Table of n, a(n) for n = 1..1000</a>

%H Mats Granvik, <a href="http://pastebin.com/FJbdSsW8">Mathematica program to compute the relation to the Dirichlet inverse of the Euler totient function</a>

%H H. Helfgott and A. Ubis, <a href="https://arxiv.org/abs/1812.08707">Primos, paridad y análisis</a>, arXiv:1812.08707 [math.NT], Dec. 2018.

%F From _Benoit Cloitre_, Dec 08 2002: (Start)

%F k such that Sum_{d|k} mu(d)*tau(d) = (-1)^omega(k) = -1 where mu(d) = A008683(d), tau(d) = A000005(d) and omega(d) = A001221(d).

%F k such that A023900(k) < 0. (End)

%F gcd(A008472(a(n)), A007947(a(n))) > 1; see A014963. - _Labos Elemer_, Mar 26 2003

%F A076479(a(n)) = -1. - _Reinhard Zumkeller_, Jun 01 2013

%p q:= n-> is(nops(ifactors(n)[2])::odd):

%p select(q, [$1..150])[]; # _Alois P. Heinz_, Feb 12 2021

%t (* Prior to version 7.0 *) littleOmega[n_] := Length[FactorInteger[n]]; Select[ Range[2, 149], (-1)^littleOmega[#] == -1 &] (* _Jean-François Alcover_, Nov 30 2011, after _Benoit Cloitre_ *)

%t (* Version 7.0+ *) Select[Range[2, 149], (-1)^PrimeNu[#] == -1 &]

%t Select[Range[1000],OddQ[PrimeNu[#]]&] (* _Harvey P. Dale_, Nov 27 2012 *)

%o (Haskell)

%o a030230 n = a030230_list !! (n-1)

%o a030230_list = filter (odd . a001221) [1..]

%o -- _Reinhard Zumkeller_, Aug 14 2011

%o (PARI) is(n)=omega(n)%2 \\ _Charles R Greathouse IV_, Sep 14 2015

%Y Cf. A030231, A123066.

%Y Cf. A008472, A007947, A014963.

%Y Cf. A076479.

%Y Cf. A008683, A000005, A001221, A023900.

%K nonn,easy,nice

%O 1,1

%A _David W. Wilson_