login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123066
(Number of numbers <= n with an odd number of distinct prime factors) - (number of numbers <= n with an even number of distinct prime factors).
5
0, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 5, 6, 5, 4, 5, 6, 5, 6, 5, 4, 3, 4, 3, 4, 3, 4, 3, 4, 5, 6, 7, 6, 5, 4, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 1, 2, 1, 0, -1, 0, -1, -2, -3, -4, -5, -4, -3, -2, -3, -4, -3, -4, -3, -2, -3, -4, -3, -2, -3, -2, -3, -4, -5, -6, -5, -4, -5, -4, -5, -4, -3, -4, -5, -6, -7, -6, -5, -6, -7, -8, -9, -10
OFFSET
1,3
COMMENTS
Analog of A072203 for number of distinct factors. Conjecture that sequence changes sign infinitely often, although the next sign change is probably large.
The signs first change at n = 52 and then change again at n = 7954. - Harvey P. Dale, Jul 04 2012
LINKS
H. Helfgott and A. Ubis, Primos, paridad y análisis, arXiv:1812.08707 [math.NT], Dec. 2018.
FORMULA
a(n) = Sum_{k>=1} (-1)^(k-1) * A346617(n,k). - Alois P. Heinz, Aug 19 2021
MAPLE
a:= proc(n) option remember; `if`(n<2, 0, a(n-1)+
`if`(nops(ifactors(n)[2])::odd, 1, -1))
end:
seq(a(n), n=1..120); # Alois P. Heinz, Dec 21 2018
MATHEMATICA
dpf[n_] := Module[{df = PrimeNu[n]}, If[OddQ[df], 1, -1]]; Join[{0}, Accumulate[ Array[dpf, 100, 2]]] (* Harvey P. Dale, Jul 04 2012 *)
PROG
(Python)
from sympy import primenu
def A123066(n): return 1+sum(1 if primenu(i)&1 else -1 for i in range(1, n+1)) # Chai Wah Wu, Dec 31 2022
CROSSREFS
Cf. A346617.
Sequence in context: A262519 A225320 A308937 * A330239 A235121 A270652
KEYWORD
easy,look,sign
AUTHOR
STATUS
approved