login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123063
Theta series of lattice with Gram matrix [4,1;1,8].
4
1, 0, 2, 0, 2, 2, 0, 2, 2, 0, 2, 0, 0, 0, 2, 0, 4, 0, 2, 2, 4, 0, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, 4, 0, 0, 2, 2, 0, 2, 0, 6, 2, 0, 0, 0, 2, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 6, 0, 0, 2, 0, 0, 2, 2, 4, 0, 0, 0, 0, 0, 6, 2, 2, 0, 0, 0, 4, 0, 0, 0, 6, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 2, 0, 2, 4, 0, 6, 2, 0, 2, 0
OFFSET
0,3
COMMENTS
a(n) = number of solutions to n = 2*x^2 + x*y + 4*y^2 in integers, hence a(n) nonzero if and only if n is in A123064 and p is prime and a(p) = 2 if and only if p is in A106872. - Michael Somos, Jul 16 2011
REFERENCES
J. H. Conway, The Sensual (Quadratic) Form, M.A.A., 1997, p. 82.
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u6*u1^3 + 2*u3*u2^3 - 3*u3^3*u2 - 6*u6^3*u1 + 6*u6*u2^2*u1 - 6*u3*u2^2*u1 + 3*u3*u2*u1^2 - 6*u6*u2*u1^2 - 9*u6*u3^2*u1 - 18*u6^2*u3*u2 + 18*u6*u3^2*u2 + 18*u6^2*u3*u1. - Michael Somos, Sep 28 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (31 t)) = 31^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Jul 16 2011
G.f.: Sum_{n,m in Z} x^(2*n^2 + n*m + 4*m^2).
EXAMPLE
G.f. = 1 + 2*x^2 + 2*x^4 + 2*x^5 + 2*x^7 + 2*x^8 + 2*x^10 + 2*x^14 + 4*x^16 + 2*x^18 + ...
G.f. = 1 + 2*q^4 + 2*q^8 + 2*q^10 + 2*q^14 + 2*q^16 + 2*q^20 + 2*q^28 + 4*q^32 + ...
MATHEMATICA
terms = 105; max = terms+3; s = Sum[x^(2*n^2 + n*m + 4*m^2), {n, -max, max}, {m, -max, max}] + O[x]^max; CoefficientList[s, x][[1 ;; terms]] (* Jean-François Alcover, Jul 05 2017 *)
PROG
(Magma) L:=LatticeWithGram(2, [4, 1, 1, 8] ); T<q> := ThetaSeries(L, 500); T;
(PARI) {a(n) = if( n<1, n==0, qfrep( [4, 1; 1, 8], n, 1)[n] * 2)}; /* Michael Somos, Sep 28 2006 */
(Magma) A := Basis( ModularForms( Gamma1(31), 1), 103); A[1] + 2*A[3] + 2*A[5] + 2*A[6] + 2*A[8] + 2*A[9] + 2*A[11] + 2*A[15]; /* Michael Somos, Jun 14 2014 */
(Magma) a := func <n | Coefficient( ThetaSeries( LatticeWithGram( 2, [4, 1, 1, 8]), 2*n), 2*n)>; /* Michael Somos, Jun 14 2014 */
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 27 2006
STATUS
approved