login
Lexicographically earliest sequence of positive integers that have at most one distinct prime index already in the sequence.
13

%I #5 Feb 02 2020 09:04:09

%S 1,2,3,4,5,7,8,9,11,13,16,17,19,23,25,26,27,29,31,32,37,39,41,43,47,

%T 49,52,53,58,59,61,64,65,67,71,73,74,79,81,83,86,87,89,91,94,97,101,

%U 103,104,107,109,111,113,116,117,121,122,125,127,128,129,131,137

%N Lexicographically earliest sequence of positive integers that have at most one distinct prime index already in the sequence.

%C A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

%C Conjecture: a(n)/A331784(n) -> 1 as n -> infinity.

%H Gus Wiseman, <a href="/A331912/a331912.png">Plot of A331912(n)/A331784(n) for n = 1..3729.</a>

%e The sequence of terms together with their prime indices begins:

%e 1: {} 37: {12} 86: {1,14}

%e 2: {1} 39: {2,6} 87: {2,10}

%e 3: {2} 41: {13} 89: {24}

%e 4: {1,1} 43: {14} 91: {4,6}

%e 5: {3} 47: {15} 94: {1,15}

%e 7: {4} 49: {4,4} 97: {25}

%e 8: {1,1,1} 52: {1,1,6} 101: {26}

%e 9: {2,2} 53: {16} 103: {27}

%e 11: {5} 58: {1,10} 104: {1,1,1,6}

%e 13: {6} 59: {17} 107: {28}

%e 16: {1,1,1,1} 61: {18} 109: {29}

%e 17: {7} 64: {1,1,1,1,1,1} 111: {2,12}

%e 19: {8} 65: {3,6} 113: {30}

%e 23: {9} 67: {19} 116: {1,1,10}

%e 25: {3,3} 71: {20} 117: {2,2,6}

%e 26: {1,6} 73: {21} 121: {5,5}

%e 27: {2,2,2} 74: {1,12} 122: {1,18}

%e 29: {10} 79: {22} 125: {3,3,3}

%e 31: {11} 81: {2,2,2,2} 127: {31}

%e 32: {1,1,1,1,1} 83: {23} 128: {1,1,1,1,1,1,1}

%e For example, the prime indices of 117 are {2,2,6}, of which only 2 is already in the sequence, so 117 is in the sequence.

%t aQ[n_]:=Length[Select[PrimePi/@First/@If[n==1,{},FactorInteger[n]],aQ]]<=1;

%t Select[Range[100],aQ]

%Y Contains all prime powers A000961.

%Y Numbers S without all prime indices in S are A324694.

%Y Numbers S without any prime indices in S are A324695.

%Y Numbers S with at most one prime index in S are A331784.

%Y Numbers S with exactly one prime index in S are A331785.

%Y Numbers S with exactly one distinct prime index in S are A331913.

%Y Cf. A000002, A000720, A001222, A001462, A324696, A331683, A331873, A331914.

%K nonn

%O 1,2

%A _Gus Wiseman_, Feb 01 2020