OFFSET
1,3
COMMENTS
This is a weaker condition than achirality (cf. A003238).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..500
FORMULA
a(n) = 1 + Sum_{k = 2..n-1} floor((n-1)/k) * a(k).
a(n) ~ c * 2^n, where c = 0.3270422384018894564479397100499014525700668391191792769625407295138546463... - Vaclav Kotesovec, Sep 07 2019
EXAMPLE
The a(1) = 1 through a(6) = 18 rooted trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((o)) ((oo)) ((ooo)) ((oooo))
(o(o)) (o(oo)) (o(ooo))
(((o))) (oo(o)) (oo(oo))
(((oo))) (ooo(o))
((o)(o)) (((ooo)))
((o(o))) ((o(oo)))
(o((o))) ((oo(o)))
((((o)))) (o((oo)))
(o(o)(o))
(o(o(o)))
(oo((o)))
((((oo))))
(((o)(o)))
(((o(o))))
((o((o))))
(o(((o))))
(((((o)))))
MATHEMATICA
saue[n_]:=Sum[If[SameQ@@DeleteCases[ptn, 1], If[DeleteCases[ptn, 1]=={}, 1, saue[DeleteCases[ptn, 1][[1]]]], 0], {ptn, IntegerPartitions[n-1]}];
Table[saue[n], {n, 15}]
PROG
(PARI) seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + sum(k=2, n-1, (n-1)\k*v[k])); v} \\ Andrew Howroyd, Oct 26 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 07 2018
STATUS
approved