login
A320222
Number of unlabeled rooted trees with n nodes in which the non-leaf branches directly under any given node are all equal.
12
1, 1, 2, 4, 9, 18, 39, 78, 161, 324, 658, 1316, 2657, 5314, 10668, 21347, 42777, 85554, 171290, 342580, 685498, 1371037, 2742733, 5485466, 10972351, 21944711, 43892080, 87784323, 175574004, 351148008, 702307038, 1404614076, 2809249582, 5618499824, 11237042426
OFFSET
1,3
COMMENTS
This is a weaker condition than achirality (cf. A003238).
LINKS
FORMULA
a(n) = 1 + Sum_{k = 2..n-1} floor((n-1)/k) * a(k).
a(n) ~ c * 2^n, where c = 0.3270422384018894564479397100499014525700668391191792769625407295138546463... - Vaclav Kotesovec, Sep 07 2019
EXAMPLE
The a(1) = 1 through a(6) = 18 rooted trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((o)) ((oo)) ((ooo)) ((oooo))
(o(o)) (o(oo)) (o(ooo))
(((o))) (oo(o)) (oo(oo))
(((oo))) (ooo(o))
((o)(o)) (((ooo)))
((o(o))) ((o(oo)))
(o((o))) ((oo(o)))
((((o)))) (o((oo)))
(o(o)(o))
(o(o(o)))
(oo((o)))
((((oo))))
(((o)(o)))
(((o(o))))
((o((o))))
(o(((o))))
(((((o)))))
MATHEMATICA
saue[n_]:=Sum[If[SameQ@@DeleteCases[ptn, 1], If[DeleteCases[ptn, 1]=={}, 1, saue[DeleteCases[ptn, 1][[1]]]], 0], {ptn, IntegerPartitions[n-1]}];
Table[saue[n], {n, 15}]
PROG
(PARI) seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + sum(k=2, n-1, (n-1)\k*v[k])); v} \\ Andrew Howroyd, Oct 26 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 07 2018
STATUS
approved