login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A289846 p-INVERT of (1,0,1,0,1,0,1,0,1,...) (A059841), where p(S) = 1 - S - S^2. 3
1, 2, 4, 9, 18, 39, 80, 170, 353, 744, 1553, 3262, 6824, 14313, 29970, 62823, 131596, 275782, 577777, 1210704, 2536657, 5315210, 11136700, 23334969, 48893202, 102446199, 214654136, 449764562, 942387569, 1974580920, 4137324929, 8668915558, 18163921856 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial.  Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x.  The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x).   Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).

See A289780 for a guide to related sequences.

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1, 3, -1, -1)

FORMULA

G.f.: (1 + x - x^2)/(1 - x - 3 x^2 + x^3 + x^4).

a(n) = a(n-1) + 3*a(n-2) - a(n-3) - a(n-4).

MATHEMATICA

z = 60; s = x/(1 - x^2); p = 1 - s - s^2;

Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A059841 *)

Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289846 *)

CROSSREFS

Cf. A059841, A289780.

Sequence in context: A320222 A036610 A219755 * A193201 A038044 A189911

Adjacent sequences:  A289843 A289844 A289845 * A289847 A289848 A289849

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Aug 14 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 30 05:35 EDT 2020. Contains 334712 sequences. (Running on oeis4.)