OFFSET
0,2
COMMENTS
Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A289780 for a guide to related sequences.
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..999
Index entries for linear recurrences with constant coefficients, signature (1, 3, -1, 1, -1, -2, 0, -1)
FORMULA
G.f.: (1 + x - x^2 - x^4)/(1 - x - 3 x^2 + x^3 - x^4 + x^5 + 2 x^6 + x^8).
a(n) = a(n-1) + 3*a(n-2) - a(n-3) + a(n-4) - a(n-5) - 2*a(n-6) - a(n-8).
MATHEMATICA
z = 60; s = -x/(x^4 + x^2 - 1); p = 1 - s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A079977 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (*A289845*)
LinearRecurrence[{1, 3, -1, 1, -1, -2, 0, -1}, {1, 2, 4, 9, 19, 43, 91, 202}, 40] (* Harvey P. Dale, Jan 16 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 14 2017
STATUS
approved