login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289845
p-INVERT of A079977, where p(S) = 1 - S - S^2.
2
1, 2, 4, 9, 19, 43, 91, 202, 433, 952, 2055, 4494, 9737, 21236, 46099, 100403, 218164, 474833, 1032256, 2245929, 4883690, 10623848, 23103985, 50255443, 109298635, 237734446, 517055409, 1124617945, 2446001258, 5320100761, 11571106298, 25167245524, 54738437517
OFFSET
0,2
COMMENTS
Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A289780 for a guide to related sequences.
LINKS
FORMULA
G.f.: (1 + x - x^2 - x^4)/(1 - x - 3 x^2 + x^3 - x^4 + x^5 + 2 x^6 + x^8).
a(n) = a(n-1) + 3*a(n-2) - a(n-3) + a(n-4) - a(n-5) - 2*a(n-6) - a(n-8).
MATHEMATICA
z = 60; s = -x/(x^4 + x^2 - 1); p = 1 - s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A079977 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (*A289845*)
LinearRecurrence[{1, 3, -1, 1, -1, -2, 0, -1}, {1, 2, 4, 9, 19, 43, 91, 202}, 40] (* Harvey P. Dale, Jan 16 2019 *)
CROSSREFS
Sequence in context: A193021 A112569 A301706 * A101463 A319379 A347011
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 14 2017
STATUS
approved