login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A289845 p-INVERT of A079977, where p(S) = 1 - S - S^2. 2
1, 2, 4, 9, 19, 43, 91, 202, 433, 952, 2055, 4494, 9737, 21236, 46099, 100403, 218164, 474833, 1032256, 2245929, 4883690, 10623848, 23103985, 50255443, 109298635, 237734446, 517055409, 1124617945, 2446001258, 5320100761, 11571106298, 25167245524, 54738437517 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial.  Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x.  The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x).   Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).

See A289780 for a guide to related sequences.

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..999

Index entries for linear recurrences with constant coefficients, signature (1, 3, -1, 1, -1, -2, 0, -1)

FORMULA

G.f.: (1 + x - x^2 - x^4)/(1 - x - 3 x^2 + x^3 - x^4 + x^5 + 2 x^6 + x^8).

a(n) = a(n-1) + 3*a(n-2) - a(n-3) + a(n-4) - a(n-5) - 2*a(n-6) - a(n-8).

MATHEMATICA

z = 60; s = -x/(x^4 + x^2 - 1); p = 1 - s - s^2;

Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A079977 *)

Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (*A289845*)

LinearRecurrence[{1, 3, -1, 1, -1, -2, 0, -1}, {1, 2, 4, 9, 19, 43, 91, 202}, 40] (* Harvey P. Dale, Jan 16 2019 *)

CROSSREFS

Cf. A079977, A289780.

Sequence in context: A193021 A112569 A301706 * A101463 A319379 A206301

Adjacent sequences:  A289842 A289843 A289844 * A289846 A289847 A289848

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Aug 14 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 09:55 EDT 2020. Contains 334654 sequences. (Running on oeis4.)