OFFSET
0,2
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0) + c(1)*x + c(2)*x^2 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the INVERT transform of s, so that p-INVERT is a generalization of the INVERT transform (e.g., A033453).
See A289780 for a guide to related sequences.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 1, 4, -2, 0, -6, 1, 0, 4, 0, 0, -1)
FORMULA
a(n) = a(n-1) + a(n-2) + 4*a(n-3) - 2*a(n-4) - 6*a(n-7) + a(n-8) + 4*a(n-10) - a(n-13).
G.f.: (1 + x - 2*x^3 + x^6) / (1 - x - x^2 - 4*x^3 + 2*x^4 + 6*x^6 - x^7 - 4*x^9 + x^12). - Colin Barker, Aug 13 2017
MATHEMATICA
PROG
(PARI) Vec((1 + x - 2*x^3 + x^6) / (1 - x - x^2 - 4*x^3 + 2*x^4 + 6*x^6 - x^7 - 4*x^9 + x^12) + O(x^60)) \\ Colin Barker, Aug 13 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 12 2017
STATUS
approved