login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289844
p-INVERT of A175676 (starting at n=3), where p(S) = 1 - S - S^2.
2
1, 2, 3, 7, 16, 31, 64, 134, 274, 567, 1168, 2405, 4967, 10232, 21094, 43505, 89672, 184892, 381203, 785886, 1620327, 3340606, 6887304, 14199737, 29275538, 60357622, 124439898, 256558196, 528948160, 1090536002, 2248364880, 4635470266, 9556979689, 19703689739
OFFSET
0,2
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0) + c(1)*x + c(2)*x^2 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the INVERT transform of s, so that p-INVERT is a generalization of the INVERT transform (e.g., A033453).
See A289780 for a guide to related sequences.
FORMULA
a(n) = a(n-1) + a(n-2) + 4*a(n-3) - 2*a(n-4) - 6*a(n-7) + a(n-8) + 4*a(n-10) - a(n-13).
G.f.: (1 + x - 2*x^3 + x^6) / (1 - x - x^2 - 4*x^3 + 2*x^4 + 6*x^6 - x^7 - 4*x^9 + x^12). - Colin Barker, Aug 13 2017
MATHEMATICA
z = 60; s = x/((x - 1)^2*(1 + x + x^2)^2); p = 1 - s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A175676, shifted *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289844 *)
PROG
(PARI) Vec((1 + x - 2*x^3 + x^6) / (1 - x - x^2 - 4*x^3 + 2*x^4 + 6*x^6 - x^7 - 4*x^9 + x^12) + O(x^60)) \\ Colin Barker, Aug 13 2017
CROSSREFS
Sequence in context: A250193 A004782 A049956 * A153056 A235112 A081207
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 12 2017
STATUS
approved