login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

p-INVERT of A175676 (starting at n=3), where p(S) = 1 - S - S^2.
2

%I #12 Aug 13 2017 10:46:50

%S 1,2,3,7,16,31,64,134,274,567,1168,2405,4967,10232,21094,43505,89672,

%T 184892,381203,785886,1620327,3340606,6887304,14199737,29275538,

%U 60357622,124439898,256558196,528948160,1090536002,2248364880,4635470266,9556979689,19703689739

%N p-INVERT of A175676 (starting at n=3), where p(S) = 1 - S - S^2.

%C Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0) + c(1)*x + c(2)*x^2 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the INVERT transform of s, so that p-INVERT is a generalization of the INVERT transform (e.g., A033453).

%C See A289780 for a guide to related sequences.

%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1, 4, -2, 0, -6, 1, 0, 4, 0, 0, -1)

%F a(n) = a(n-1) + a(n-2) + 4*a(n-3) - 2*a(n-4) - 6*a(n-7) + a(n-8) + 4*a(n-10) - a(n-13).

%F G.f.: (1 + x - 2*x^3 + x^6) / (1 - x - x^2 - 4*x^3 + 2*x^4 + 6*x^6 - x^7 - 4*x^9 + x^12). - _Colin Barker_, Aug 13 2017

%t z = 60; s = x/((x - 1)^2*(1 + x + x^2)^2); p = 1 - s - s^2;

%t Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A175676, shifted *)

%t Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289844 *)

%o (PARI) Vec((1 + x - 2*x^3 + x^6) / (1 - x - x^2 - 4*x^3 + 2*x^4 + 6*x^6 - x^7 - 4*x^9 + x^12) + O(x^60)) \\ _Colin Barker_, Aug 13 2017

%Y Cf. A175686, A289780.

%K nonn,easy

%O 0,2

%A _Clark Kimberling_, Aug 12 2017