login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A289843 p-INVERT of (1,0,2,0,3,0,4,0,5,...) (A027656), where p(S) = 1 - S - S^2. 2
1, 2, 5, 13, 29, 73, 168, 410, 962, 2317, 5483, 13131, 31193, 74509, 177311, 423025, 1007505, 2402354, 5723761, 13644587, 32514730, 77501115, 184698088, 440216833, 1049148789, 2500520812, 5959478837, 14203542282, 33851496564, 80679640434, 192285583548 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).

See A289780 for a guide to related sequences.

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1, 5, -2, -6, 1, 4, 0, -1)

FORMULA

G.f.: (1 + x - 2 x^2 + x^4)/(1 - x - 5 x^2 + 2 x^3 + 6 x^4 - x^5 - 4 x^6 + x^8).

a(n) = a(n-1) + 5*a(n-2) - 2*a(n-3) - 6*a(n-4) + a(n-5) + 4*a(n-6) - a(n-8).

MATHEMATICA

z = 60; s = x/(1 - x^2)^2; p = 1 - s - s^2;

Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A027656 *)

Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289843 *)

CROSSREFS

Cf. A027656, A289780.

Sequence in context: A282831 A259762 A045703 * A242080 A178444 A299145

Adjacent sequences:  A289840 A289841 A289842 * A289844 A289845 A289846

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Aug 12 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 4 15:22 EDT 2020. Contains 334828 sequences. (Running on oeis4.)