OFFSET
0,2
COMMENTS
A floretion-generated sequence relating to Pythagoras' theorem generalized.
Floretion Algebra Multiplication Program. FAMP code: em[J* ]sigcycseq[ + .75'i + .5'k + .25i' + .5j' + .5k' - .25'ii' + .25'jj' - .25'kk' - .75'jk' + .5'ki' - .25'kj' + .25e]
REFERENCES
F. A. Haight, On a generalization of Pythagoras' theorem, pp. 73-77 of J. C. Butcher, editor, A Spectrum of Mathematics. Auckland University Press, 1971.
LINKS
James A. Sellers, Domino Tilings and Products of Fibonacci and Pell Numbers, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.2.
Index entries for linear recurrences with constant coefficients, signature (0,-5,0,-1)
FORMULA
Let b(1)=1, b(2)=2, b(3)=4 and b(n)=(b(n-1)*b(n-2)+(3+(-1)^n)/2)/b(n-3) then b(n)=abs(a(n)) - Benoit Cloitre, Mar 03 2007
a(n) = -5*a(n-2)-a(n-4), n>3. [Harvey P. Dale, Apr 15 2012]
G.f.: ( 1+2*x+x^2+x^3 ) / ( 1+5*x^2+x^4 ). - R. J. Mathar, Jun 18 2014
a(n) = -3a(n-1)+2a(n-2) if n even. a(n) = (5*a(n-1)+a(n-2))/2 if n odd. - R. J. Mathar, Jun 18 2014
MATHEMATICA
CoefficientList[Series[(x^3+x^2+2x+1)/(x^4+5x^2+1), {x, 0, 30}], x] (* or *) LinearRecurrence[{0, -5, 0, -1}, {1, 2, -4, -9}, 31] (* Harvey P. Dale, Apr 15 2012 *)
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Creighton Dement, Jan 20 2005
STATUS
approved