login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101463
Expansion of g.f. (x^3+x^2+2*x+1)/(x^4+5*x^2+1).
0
1, 2, -4, -9, 19, 43, -91, -206, 436, 987, -2089, -4729, 10009, 22658, -47956, -108561, 229771, 520147, -1100899, -2492174, 5274724, 11940723, -25272721, -57211441, 121088881, 274116482, -580171684, -1313370969, 2779769539, 6292738363, -13318676011
OFFSET
0,2
COMMENTS
A floretion-generated sequence relating to Pythagoras' theorem generalized.
Floretion Algebra Multiplication Program. FAMP code: em[J* ]sigcycseq[ + .75'i + .5'k + .25i' + .5j' + .5k' - .25'ii' + .25'jj' - .25'kk' - .75'jk' + .5'ki' - .25'kj' + .25e]
REFERENCES
F. A. Haight, On a generalization of Pythagoras' theorem, pp. 73-77 of J. C. Butcher, editor, A Spectrum of Mathematics. Auckland University Press, 1971.
LINKS
James A. Sellers, Domino Tilings and Products of Fibonacci and Pell Numbers, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.2.
FORMULA
Let b(1)=1, b(2)=2, b(3)=4 and b(n)=(b(n-1)*b(n-2)+(3+(-1)^n)/2)/b(n-3) then b(n)=abs(a(n)) - Benoit Cloitre, Mar 03 2007
a(n) = -5*a(n-2)-a(n-4), n>3. [Harvey P. Dale, Apr 15 2012]
G.f.: ( 1+2*x+x^2+x^3 ) / ( 1+5*x^2+x^4 ). - R. J. Mathar, Jun 18 2014
a(n) = -3a(n-1)+2a(n-2) if n even. a(n) = (5*a(n-1)+a(n-2))/2 if n odd. - R. J. Mathar, Jun 18 2014
MATHEMATICA
CoefficientList[Series[(x^3+x^2+2x+1)/(x^4+5x^2+1), {x, 0, 30}], x] (* or *) LinearRecurrence[{0, -5, 0, -1}, {1, 2, -4, -9}, 31] (* Harvey P. Dale, Apr 15 2012 *)
CROSSREFS
Elements of even index in the sequence gives A004253. Elements of odd index in the sequence gives A002310.
Sequence in context: A112569 A301706 A289845 * A319379 A347011 A206301
KEYWORD
easy,sign
AUTHOR
Creighton Dement, Jan 20 2005
STATUS
approved